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The first goal of vibration-transit theory is to be able to calculate from a tractable partition function and
without adjustable parameters the thermodynamic properties of the elemental monatomic liquids. The key
hypothesis is that the random class of potential energy valleys dominates the statistical mechanics of the liquid
at temperatures above melting T�Tm and that these valleys are macroscopically uniform in the thermodynamic
limit. This allows us to use a single random valley to calculate the vibrational contribution to liquid properties,
exactly in the thermodynamic limit, and as an approximation at finite number of particles N. This approxima-
tion is tested here for liquid Na with a physically realistic potential based on electronic structure theory.
Steepest descent quenches were made from the molecular dynamics equilibrium liquid �N=500� at tempera-
tures from 0.90Tm to 3.31Tm, and six potential parameters were calculated for each structure, namely, the
potential energy and five principal moments of the vibrational frequency distribution. The results show
temperature-independent means and small standard deviations for all potential parameters, consistent with
random valley uniformity at N→�, and with finite-N broadening at N=500. The expected error in the single
random valley approximation for Na at N=500 and T�Tm is 0.1% for the entropy and 0.5% for the internal
energy, negligible in the current development of liquid dynamics theory. In related quench studies of recent
years, the common finding of nearly temperature-independent means of structural potential energy properties at
T�Tm suggests that the single random valley approximation might also apply to systems more complicated
than the elemental liquids.
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I. INTRODUCTION

To place the present work in the context of current phys-
ics research, it is helpful to outline some relevant theoretical
development. Pseudopotential perturbation theory was devel-
oped as a model electronic structure theory for nearly free
electron metals. The basic concept was well described by
Sham �1� in his calculation of the phonon spectrum of Na,
and by Harrison �2� in his formulation of the total adiabatic
potential �the form of that potential is written here in Eq.
�4��. Successful calculations were made of the compressibili-
ties and binding energies of simple metals �3�, and of
temperature-dependent thermodynamic properties �4�. As a
matter of principle the theory applies as well to the liquid as
to the crystal. A study was made of the resistivities of the
elemental liquids �5�. Reviews were made of the application
of pseudopotential perturbation theory to liquid metals �6,7�,
and comparisons of theory and experiment were also re-
viewed �8�. As a result of these studies and many more, it is
clear by now that pseudopotential perturbation theory can
provide realistic interatomic potentials for the simple metals
and alloys. The same theory is also applicable to a broad
range of problems, as illustrated by a recent application to
electron phonon interactions �9,10�.

Classical molecular dynamics �MD� has been developed
to calculate statistical mechanical averages over the atomic
motion for many-atom systems. Results are obtained for real
materials when realistic interatomic potentials are used, and
these are commonly based on pseudopotential perturbation
theory for the nearly free-electron metals. MD calculations
have been used to assess the validity of anharmonic theory in
the dynamic structure factor S�q ,�� of bcc K �11� and to
evaluate the temperature dependence of the elastic constants

of bcc Na �12�. MD has a larger role to play in liquids than
in crystals, since the entire atomic motion is a priori un-
known in liquids. Good agreement with experiment was ob-
tained for S�q ,�� in liquid Rb �13�, for thermodynamic prop-
erties of liquid Na �14�, the static structure factor of liquid Li
�15� and of the remaining alkali metals �16�, and shear vis-
cosity of Rb �17,18�. MD calculations are considered suffi-
ciently accurate to substitute for experimental data, in order
to assess the validity of theory in cases where laboratory
experiments are not available. Calculations carried out from
this point of view include transverse current correlation func-
tions for alkali metals �19,20�, Brillouin peak dispersion
curves for alkali metals �16,20�, the shear stress autocorrela-
tion function for Rb �21�, and transport coefficients for
Lennard-Jones �LJ� Ar �22�. By now it is clear that, from the
correct interatomic potentials, MD can give accurate results
for equilibrium and nonequilibrium properties of condensed
matter phases.

Here we are interested in the atomic motion and statistical
mechanics based on this motion for the monatomic elemental
liquids. The most well developed theory for equilibrium ther-
modynamic properties is based on the interatomic pair po-
tential and the pair distribution function �7,23�. Nonequilib-
rium theories are currently much less developed. For the
dynamic structure factor, simplifying approximations for the
glassy state are discussed by Egelstaff �24�, and a Feynman-
like collective mode approximation is applied to classical
elemental liquids by March and Alonso �25�. The formally
exact memory function analysis for S�q ,�� described, for
example, by Hansen and McDonald �26�, or by Balucani and
Zoppi �27�, can be parametrized and fitted to experimental
data for liquid metals �28�. Empirical relations for the shear
viscosity of the elemental liquids are compared with experi-
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ments by March and Tosi �29� and by Chisolm and Wallace
�30�.

In vibration-transit �VT� theory our aim is to develop a
different and complementary path in the study of liquid dy-
namics: a formulation based on an approximate but tractable
zeroth order Hamiltonian, from which both equilibrium and
nonequilibrium properties can be calculated for the elemental
liquids without adjustable parameters. From this point we
hope to systematically improve our understanding of the
atomic motion by studying the corrections beyond the zeroth
order formulation.

The idea of quenching a MD system from the equilibrium
liquid, to find and examine the inherent structures which un-
derlie the atomic motion, was pioneered by Stillinger and
Weber �31–33�. This quickly became an indispensable tech-
nique for studying the potential energy landscape, and for
seeking relations between this landscape and the dynamic
properties of the system �34–36�. Progress in this area is
described in the monographs of Binder and Kob �37�, of
Wales �38�, and in the review of Sciortino �39�. In the area of
thermodynamic properties, application was made to the
equation of state of soft spheres �40�, and of models for
water �41� and orthoterphenyl �42�.

The key approximation in VT theory is that the random
class of many-atom potential energy valleys dominates the
potential surface and that these valleys all have the same
structural potential and distribution of vibrational mode fre-
quencies �43�. Hence a single random valley suffices to cal-
culate vibrational properties of the liquid state. In equilib-
rium statistical mechanics, the primary role of transits is to
allow the system to access the multitude of random valleys,
and thus to possess the corresponding liquid configurational
entropy. This formulation already gives a good account of
the thermodynamic properties of the elemental monatomic
liquids at melt �43�. In nonequilibrium statistical mechanics
the vibrational contribution plus a transit model gives a re-
spectable account of the velocity autocorrelation function for
liquid Na �44�. Moreover the a priori vibrational contribu-
tion accounts for the measured Brillouin peak dispersion
curve of liquid Na within experimental error �45�, and with
an added model for transits gives a good description of the
entire dynamic structure factor �46�.

At this point in the theoretical development it is important
to make a quantitative study of the key “single random val-
ley” approximation in VT theory. In earlier work �47,48�,
means and standard deviations were listed for potential pa-
rameters for 10 random structures with mixed N �500 or
1000�. Since the number of samples was so small, and since
the standard deviations vary with N, those results are not
useful for a quantitative estimate of errors. Here, by doing
more quenches at fixed N �500�, we make statistically mean-
ingful estimates of the errors involved in the single random
valley approximation when VT theory is compared with ex-
periment for thermodynamic properties. These estimates are
important for assessing the accuracy of the basic theory. Also
in the earlier work, the ten random structures examined were
all quenched from the same initial liquid temperature of 395
K. Since then, glass transition studies have found a Gaussian
distribution of structural potentials in binary Lennard-Jones
systems �49–51�, a distribution which gives a strong depen-

dence of the mean structural potential on the temperature
from which the system is quenched. While we are studying
the liquid state and not the glass transition, the effect of such
a distribution remains present, in principle, at any finite tem-
perature. This would require a modification of the single ran-
dom valley approximation. We therefore need to quench
from a wide range of temperatures in order to rule out, or
account for, a dependence of the structural potential proper-
ties on the temperature from which the system is quenched.

The single random valley approximation will be described
in Sec. II, to clarify the questions to be investigated. In Sec.
III, our methods are presented and results are discussed. Sec-
tion IV compares our results with related quench studies,
including those which observe the Gaussian distribution, and
conclusions are briefly listed in Sec. V.

II. THE SINGLE RANDOM VALLEY APPROXIMATION

The many-atom potential surface consists of a very large
number of intersecting nearly harmonic potential valleys,
each of configurational dimension 3N for an N atom system.
For a given valley the structural potential �the total system
potential at the valley minimum� is �0, the normal vibra-
tional frequencies are �� , �=1, . . . ,3N−3, and the charac-
teristic temperature �0 is given by

ln k�0 =
1

3N − 3�
�

ln ���. �1�

The valleys are labeled with superscript 	, and their most
important potential properties are �0

	 and �0
	. The extended

valley is defined for each valley as its harmonic extension to
infinity. Then if we neglect the anharmonicity of each valley,
and neglect also the presence of valley-valley intersections,
the classical partition function arises from harmonic vibra-
tional motion in each of the extended valleys

ZN = �
	

e−
�0
	
�T/�0

	�3N. �2�

This is then subject to corrections for anharmonicity and
intervalley intersections.

Many-atom potential valleys have long been classified as
crystalline and amorphous. The separation of amorphous val-
leys into symmetric and random classes �43� was motivated
by experimental data for the normal melting �52� elements.
First, the atomic motional specific heat for both liquid and
crystal is close to 3k per atom, and suggests nearly harmonic
vibrations in the liquid, as is certainly the case for the crystal.
The result further indicates a rather constant value of �0
among the contributing valleys for each element, because a
significant distribution of �0 would appear in the specific
heat. Second, the entropy of melting at constant volume is a
rather universal constant �53�, suggesting the universal num-
ber wN of contributing valleys for the elements, where ln w
=0.80 �43,54�. This result also indicates a rather constant
value of �0 among the contributing valleys for each element,
because a significant distribution of �0 would appear in the
entropy of melting. However, for a given element, we know
there are many symmetric valleys in the potential surface, for
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example those with polycrystal and microcrystal structures,
and that these valleys have as a result of their various sym-
metries a wide variation in �0 and �0 values. The logical
indication is that there also exist random valleys, with mini-
mal orientational and translational order, and that the ran-
domness itself provides for both numerical superiority and
uniform potential properties of these valleys. If we therefore
neglect the symmetric valleys, and take the random valleys
to number wN, and for each element to have all the same
structural potential �0

l and characteristic temperature �0
l , the

partition function Eq. �2� simplifies to

ZN
l = wNe−
�0

l
�T/�0

l �3N. �3�

The superscript l refers to the liquid, and indicates any one of
the many equivalent extended random valleys. Equation �3�
is still subject to the corrections applying to Eq. �2�, for
anharmonicity and intervalley intersections.

The preceding arguments from experimental data are
clearly qualitative. They are sufficient to justify the single
random valley approximation, as expressed in Eq. �3�, as a
zeroth order approximation, but they are of little help in
evaluating the accuracy of this approximation. By far the
most precise way to make this evaluation for a real material
is from MD calculations with a physically realistic potential.
The theoretical background outlined in the Introduction is
crucial to this program.

III. METHODS AND RESULTS

We work with an interatomic potential which accurately
represents metallic Na at the density of the liquid at melt at
zero pressure. For N atoms in a volume V, the positions of
the nuclei are rK , K=1, . . . ,N, and the total system potential
���rK�� is �2�

���rK�� = ��V� +
1

2�
K,L

���rK − rL�;V� . �4�

��V� is a large negative potential which accounts for most of
the metallic binding, and ��r ;V� is the effective internuclear
potential. Since V is fixed, ��V� is constant, and the zero of
energy is chosen by setting ��V�=0. The MD system has
N=500 atoms in a cubical volume, with periodic boundary
conditions; further information on the potential and the MD
system may be found in Ref. �47�.

For each structure, �0 was evaluated, as well as the com-
plete set ���� of vibrational frequencies. Instead of the fre-
quency distribution, we report the physically important char-
acteristic temperatures �n for n=−2,−1,0 ,1 ,2. The
spectrum average of a function f���� is most accurately cal-
culated directly from the frequencies, as

	f����
 =
1

3N − 3�
�

f���� . �5�

�0 is given by Eq. �1�, and is related to the log moment of the
frequency distribution, while �n for n=−2,−1,1 ,2 , . . . , is
given by

k�n = �n + 3

3
	�����n
�1/n

. �6�

For any harmonic vibrational system, 9
8Nk�1 is the quantum

zero-point energy, �−2 is related to the classical mean square
displacement, and �2 gives the leading quantum correction to
the free energy at high temperatures �Ref. �54�, Secs. 16, 17,
and 23�.

The melting temperature for Na at 1 bar is 371 K, and
quenches were made from the equilibrium liquid at tempera-
tures from 0.90 to 3.31Tm. The reason for varying the tem-
perature is to reveal the distribution of �0 and �0 among the
valleys accessible to the liquid. To illustrate, let us write the
partition function Eq. �2� as an integral

ZN =  G��0,�0�e−
�0�T/�0�3Nd�0d�0, �7�

where G��0 ,�0� is the correlated distribution of �0 and �0

over valleys. Then the average of �0 observed at temperature
T is

	�0
 =
  �0G��0,�0�e−
�0�T/�0�3Nd�0d�0

ZN
�8�

with a similar equation for 	�0
. The observed temperature
variations of 	�0
 and 	�0
 will reveal the variations of
G��0 ,�0�. From Eq. �7�, as temperature is lowered, both
	�0
 and 	�0
 move to lower values within the distribution
G��0 ,�0�. The only distribution giving a temperature-
independent 	�0
 or 	�0
, is a  function on �0, or a  func-
tion on �0, respectively.

We quenched by steepest descent, iterating �rK= fK��t�2,
where fK is the force on atom K and the atomic mass is
absorbed in ��t�2. While the total potential is monotonically
decreasing, other potential energy functions are not. The
lowest eigenvalues �M��

2� are negative at first, and they in-
crease, but not smoothly. Eventually all the eigenvalues be-
come positive and the final convergence proceeds. Of the
characteristic temperatures �n, the last to converge is �−2.
The convergence criterion is set at ��� /N�
=10−20 mRy/atom. For comparison, kTm=2.3 mRy for Na.

Our results for 30 quenches at each temperature are listed
in Table I. Since the potential contribution ��V� is omitted
�see Eq. �4��, the �0 data are missing most of the binding
energy, about 80 mRy/atom, but this is of no consequence
since we are concerned only with potential energy differ-
ences. Note that �−2 is a measure of 	��

−2
, which depends
strongly on the few lowest frequencies, and this gives rise to
the large standard deviations for �−2. The same effect is
present but much weaker in �−1. The data of Table I are in
agreement with previous averages for a small collection of
random valleys �47�; differences are likely due to averaging
together different values of N in the earlier work.

The key property of the random valley data in Table I is
their temperature independence, and the implied narrowness
of the underlying distribution. For each potential parameter,
�0 /N and each �n, all means lie well within the standard
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deviation of every set. This property is illustrated in Fig. 1
for �0 /N. Hence there is no significant temperature depen-
dence of the means, and each distribution can be considered
a  function broadened by finite-N effects.

In the single random valley approximation, in order to
compare theory with experimental data for a real liquid, we
want the potential parameters of the representative random
valley in the thermodynamic limit. The best finite-N estimate
we have for the parameters is their mean values as listed in
Table I. If then a single random valley is chosen for statisti-
cal mechanics calculations, the expected errors of its param-
eters are given by the standard deviations in Table I. For the
thermodynamic properties of liquid Na at T�Tm and at N
=500, the error is expected to be within the following limits:
�a� 0.1% for the entropy S at Tm and decreasing as T in-
creases from the standard deviation of �0 for random valleys
and �b� 0.5% in the internal energy U at Tm and decreasing as
T increases from the standard deviation of �0 /N for random
valleys �U is measured relative to the energy of the crystal at
T=0 and P=0�. These errors are of the same magnitude as
experimental errors in the thermodynamic data for liquid Na
at Tm, and are currently negligible in the development of a
highly accurate liquid dynamics theory.

Of our 150 quenches, the system arrived at a symmetric
structure in two cases. This happens when the system at low
potential energy finds a way through many quench iterations

to organize a region of spatial symmetry. The process is ap-
parently facilitated by the periodic boundary condition and is
therefore a finite-N effect. This conclusion is supported by
our earlier results using the same quench procedure �47�,
where the liquid Na system at 400 K invariably quenched to
a symmetric structure at N=168, but was not observed to do
so at N�500. Also, while as far as we are aware LJ systems
do not usually quench to symmetric structures, several crys-
tallinelike structures were observed at N=29 by Angelani et
al. �55�. It is likely that the soft repulsive core of the Na
potential makes it easier to wiggle into a symmetric structure
than it is for the LJ potential. Individual data for our sym-
metric structures are listed in Table I, where it is seen that the
potential parameters are many standard deviations away
from the random distribution.

IV. COMPARISON WITH RELATED QUENCH STUDIES

From a detailed study of binary LJ systems, Heuer and
Büchner �49� were able to determine the underlying distribu-
tion of inherent structure energies �our �0�. The quantity
they evaluated is Geff��0�, which in our notation is �see Eq.
�7��

Geff��0� = G��0,�0��T/�0�3Nd�0. �9�

They showed Geff��0� is temperature independent at low
temperatures kT�1 and is accurately Gaussian in the center,
with a possible small non-Gaussian contribution in the
wings. Since LJ systems that crystallize have kTm�1, we
consider this value as a surrogate kTm for binary systems
also, for the purpose of scaling system properties with melt-
ing temperature. An important property of the Gaussian dis-
tribution, provided it has the correct N dependence �50�, is
that it gives a contribution to the free energy which remains
as N→�, and in which both the Gaussian mean and variance
appear. This contribution becomes increasingly important as
T decreases toward the glass transition. For an underlying
Gaussian Geff��0�, the function Geff��0�e−
�0 is a Gaussian
with constant width whose mean �0 shifts downward as T−1.
This property is clearly shown by the quench results of Sci-
ortino, Kob, and Tartaglia for binary LJ systems �Fig. 1�a� of
Ref. �34� and Fig. 4 of Ref. �51��.

TABLE I. Results from 30 steepest descent quenches from the liquid at five temperatures. Under number of structures, �r� indicates
random and �s� symmetric. Potential parameters are listed as mean ± standard deviation for the random sets, and are listed individually for
the two symmetrics.

T �K� T /Tm Number �0 /N �mRy/atom� �−2 �K� �−1 �K� �0 �K� �1 �K� �2 �K�

335 0.90 30�r� −13.478±0.034 112±5 125.1±1.0 98.60±0.20 147.04±0.08 154.09±0.10

399 1.08 30�r� −13.478±0.041 113±3 125.3±0.9 98.64±0.21 147.07±0.08 154.11±0.11

625 1.68 29�r� −13.461±0.038 112±4 124.9±1.0 98.53±0.22 147.02±0.08 154.13±0.10

799 2.15 30�r� −13.472±0.028 113±3 125.4±0.7 98.62±0.15 147.04±0.06 154.09±0.08

1228 3.31 29�r� −13.485±0.041 114±2 125.6±0.8 98.71±0.21 147.09±0.08 154.09±0.12

all 148�r� −13.475±0.037 113±4 125.3±0.9 98.62±0.20 147.05±0.08 154.10±0.10

625 1.68 1�s� −14.25 134 137 102.2 147.8 152.2

1128 3.31 1�s� −13.94 125 132 100.5 147.4 152.9
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FIG. 1. Potential energy of quenched structures �0 /N in mRy as
a function of the temperature of the initial configurations.
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Because 	�0
 shows no meaningful temperature depen-
dence in Fig. 1, our quench data show no evidence of a
Gaussian distribution of �0, for liquid Na at T�Tm. Inter-
estingly, the same property is exhibited by the binary LJ
system mentioned above, since the temperature-dependent
Gaussian Geff��0�e−
�0 does not shift with temperature at
kT�1 �34,51�. Indeed, MD calculations commonly show
very little temperature dependence for the mean inherent
structure energy at kT�1. Examples for binary LJ systems
are shown in Fig. 1�a� of Ref. �56�, Fig. 1�a� of Ref. �57�,
Fig. 2 of Ref. �58�, Fig. 5 of Ref. �59�, and Fig. 2�A� �lower�
of Ref. �60�. The same result for a monatomic LJ system is
shown in Fig. 2 of Ref. �61�, and for a model of water in Fig.
1�b� of Ref. �62�. In addition, the vibrational mode distribu-
tion g��� and/or the average 	ln ��
 is evaluated in several
of these studies, and these quantities also show very little
temperature dependence at kT�1; see, e.g., Figs. 6 and 7 of
Ref. �60�, Figs. 2�a� and 3 of Ref. �57�, and Figs. 1�b� and
2�c� of Ref. �62�. All these results are consistent with a class
of valleys with highly uniform potential energy properties,
which are statistically dominant at kT�kTm, as we find in
Na.

In this connection, we suppose that the quench technique
itself does not affect the statistical average results of our
study or the other studies mentioned. This view is supported
by the demonstration of Chakravarty et al. �63�, that two
variations of the conjugate gradient quench procedure lead to
the same average structural properties for a LJ system.

V. CONCLUSIONS

In the early development of VT theory, the hypothesis was
made concerning the potential energy surface which under-
lies the motion of monatomic liquids �43�: �a� the random
valleys are of overwhelming numerical superiority and hence
dominate the statistical mechanics at T�Tm and �b� the ran-
dom valleys all have the same macroscopic potential proper-
ties, e.g., the structural potential and the vibrational fre-
quency distribution, in the thermodynamic limit. The present
results are consistent with this hypothesis for the example of

liquid Na, with the observed spread of random valley poten-
tial parameters and the occasional appearance of a symmetric
structure attributed to finite-N effects.

This hypothesis allows us to express the vibrational con-
tribution to a thermodynamic function or to a time correla-
tion function in terms of a single random valley in the ther-
modynamic limit. When one chooses a single random valley
for practical calculations, at finite N, an error is present be-
cause of the spread of random valley potential properties at
finite N. For liquid Na at N=500 and T�Tm, the correspond-
ing expected error in the entropy and the internal energy is of
the same order as experimental error in these quantities, and
hence is negligible in the current development of an accurate
liquid dynamics theory.

Compared to the present results, more accurate data can
be obtained by increasing N. The two important trends with
increasing N are, at constant T: �a� each mean value ap-
proaches its thermodynamic limit, presumably going as N−1

when periodic boundary conditions apply and �b� the stan-
dard deviations are expected to approach zero, possibly as
N−1/2. Hence increasing N will provide more accurate ran-
dom valley parameters, for comparison of theory with ex-
periment, and will also provide a more accurate test of the
single random valley approximation.

In comparing the present results with related quench stud-
ies, we observe that nearly temperature-independent mean
values at T�Tm have been reported for the inherent structure
energies �our �0� and for the log moment of the vibrational
frequency distribution �our �0� for binary LJ systems
�56–60�, for a monatomic LJ system �61�, and for a model of
water �62�. This suggests that our hypothesis for monatomic
liquids, of a class of numerically dominant and macroscopi-
cally uniform potential energy valleys, might apply to these
systems also.
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